7.1 Worksheet

Name ______ Date _____ Prd _____

A particle moves along the x-axis and its position is given by the graph of the velocity function v ft/s

(f) What is the total distance the particle travels?

- (g) What is the x-coordinate of the particle's position when it is farthest to the right?
- (h) What is the displacement of the particle for [0, 16]?
- (i) What is the x-coordinate of the particle's finishing position?
- 2. A bug begins to crawl up a vertical wire at time t = 0. The velocity v of the bug at time, t, where t is [0, 8], is given by the function whose graph is shown above.

ii) What is the total distance the bug traveled from t = 0 to t = 8?

(a) 14

3. An equation of the line tangent to the graph of $y = \cos(2x)$ at $x = \frac{\pi}{4}$ is

(a)
$$y-1 = -(x-\pi/4)$$

(b)
$$y-1 = -2(x-\pi/4)$$

(c)
$$y = 2(x - \frac{\pi}{4})$$

(d)
$$y = -(x - \frac{\pi}{4})$$

(e)
$$y = -2(x - \frac{\pi}{4})$$

- 4. An object moves along the x-axis with initial position x(0) = 2. The velocity of the object at time $t \ge 0$ is given by $v(t) = \sin\left(\frac{\pi}{3}t\right)$.
 - (a) What is the acceleration of the object at time t = 4?
 - (b) Consider the following two statements.

Statement I: For 3< t < 4.5, the velocity of the object is decreasing.

Statement II: For 3< t < 4.5, the speed of the object is increasing.

Are either or both of these statements correct? For each statement provide a reason why it is correct or not correct.

- (c) What is the total distance traveled by the object over the time interval [0, 4]?
- (d) What is the position of the object at time t = 4?
- 5. Two runners, A and B, run on a straight racetrack for $0 \le t \le 10$ seconds. The graph above, which consists of two line segments, shows the velocity, in meters per second, of Runner A. The velocity, in meters per second, of

Runner B is given by the function v defined by $v(t) = \frac{24t}{2t+3}$.

Time (seconds)

- (a) Find the velocity of Runner A and the velocity of Runner B at time t = 2 seconds. Indicate units of measure.
- (b) Find the acceleration of Runner A and the acceleration of Runner B at time t = 2 seconds, Indicate units of measure.
- (c) Find the total distance run by Runner A and the total distance run by Runner B over the time interval $0 \le t \le 10$ seconds. Indicate units of measure.